Subclass-Specific Nuclear Localization of a Novel Cd4 Silencer Binding Factor

نویسندگان

  • William W.S. Kim
  • Gerald Siu
چکیده

The control of CD4 expression is essential for proper T lymphocyte development. We have previously described a cis-acting silencer element required for repressing transcription of the CD4 gene. Here we report the cloning and characterization of a novel factor that binds to a critical functional site in the CD4 silencer. This factor, referred to as silencer-associated factor (SAF), is a member of the helix-turn-helix factor family and shares sequence similarity with the homeodomain class of transcriptional regulators. Introduction of a specific mutation into the SAF binding site in the CD4 silencer abrogates silencer activity in transgenic mice, supporting the hypothesis that SAF is important in mediating silencer function. Although SAF is expressed in all lymphocytes, immunofluorescence studies indicate that SAF is present primarily in the cytoplasm in T cells in which the endogenous silencer is nonfunctional, whereas it is present primarily in the nucleus in T cells in which the silencer is functional. We thus hypothesize that the subclass-specific subcellular compartmentalization of SAF plays an important role in mediating the specificity of function of the CD4 silencer during T cell development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of a cell type-specific silencer in the human interleukin-3 gene promoter by the transcription factor YY1 and an AP2 sequence-recognizing factor.

Negative regulation of cytokine gene transcription is an important mechanism in maintaining homeostasis of immune function. In this study, we characterized a silencer element in the human interleukin-3 gene promoter that is responsible for the cell-specific expression of interleukin-3. This silencer activity was proposed to be mediated by an unidentified nuclear inhibitory protein (NIP). In thi...

متن کامل

Morpholino antisense oligonucleotide-mediated gene knockdown during thymocyte development reveals role for Runx3 transcription factor in CD4 silencing during development of CD4-/CD8+ thymocytes.

During thymic T cell development, immature CD4(+)/CD8(+) thymocytes develop into either CD4(+)/CD8(-) helper or CD4(-)/CD8(+) CTLs. The molecular mechanisms governing the complex selection and differentiation steps during thymic T cell development are not well understood. Here we developed a novel approach to investigate gene function during thymocyte development. We transfected ex vivo isolate...

متن کامل

T-cell subset-specific expression of the IL-4 gene is regulated by a silencer element and STAT6.

During development of CD4+ T lymphocytes in the periphery, differential expression of cytokine genes, such as those of interleukin (IL)-2 and IL-4, occurs in distinct T-cell subsets. IL-4 is a cytokine produced by T-helper 2 (Th2) cells, and the IL-4 receptor (IL-4R)-mediated signaling pathway is thought to be required for commitment to the Th2 phenotype. However, the molecular basis for develo...

متن کامل

P-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel

Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...

متن کامل

Otefin, a nuclear membrane protein, determines the fate of germline stem cells in Drosophila via interaction with Smad complexes.

Nuclear envelope proteins play important roles in chromatin organization, gene regulation, and signal transduction; however, the physiological role of these proteins remains elusive. We found that otefin (ote), which encodes a nuclear lamin-binding protein [corrected], is essential for germline stem cell (GSC) maintenance. We show that Ote, as an intrinsic factor, is both necessary and sufficie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 190  شماره 

صفحات  -

تاریخ انتشار 1999